Comparison of Analytical and Empirical Performance Models

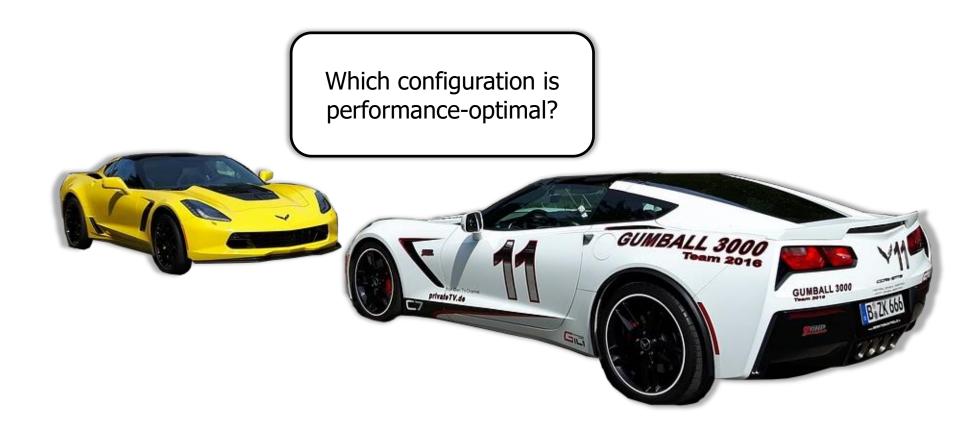
A Case Study on Multigrid Systems

Christian Kaltenecker University of Passau, Germany

Comparison of Analytical and Empirical Performance Models

Kaltenecker

Christian


Alexander Grebhahn

Sven Apel

Configurable Systems

Performance Models

• Mathematical formulas for estimating the performance

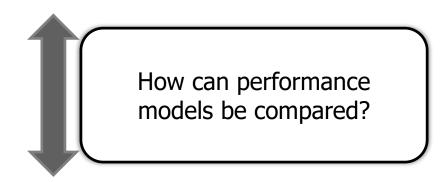
Analytical

 Created by domain experts

+ Applicable on different hardware

Requires domain knowledgeDifficult for complex software

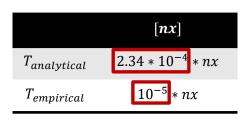
Empirical


 Created by tools with measurement results of a specific hardware

- + Applicable on complex systems
- ± Requires performance measurements
- Only applicable on measured hardware

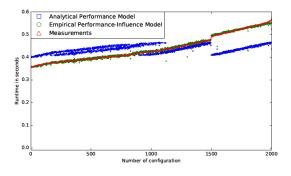
Performance Models

• Analytical: 23.37 * $\log_2(px)$ + 23.37 * $\log_2(nx)$ + 2.34 * 10⁻⁴ * nx


• Empirical:

$$-5 - 3 * px + 1.5 * px^2 + 10^{-5} * nx$$

Comparison Strategies


Syntactic

Compares the coefficients of the variables

Semantic

Compares the prediction results

Application of:

- Error Rate
- Jaccard Similarity
- Pearson Correlation

Hybrid

Uses both syntactic and semantic elements for the comparison

	[<i>nx</i>]		
T _{analytical}	$2.34 * 10^{-4} * nx$		
T _{empirical}	$10^{-5} * nx$		

Calculate influence and use it as weight for Pearson correlation

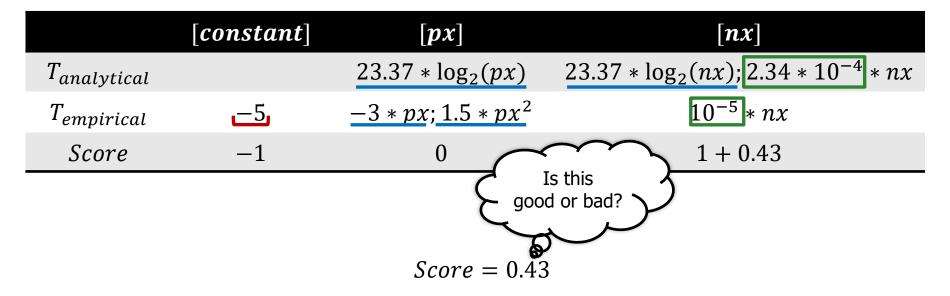
Conversion of the Performance Models

• Sort each term into equivalence classes

 $23.37 * \log_2(px) + 23.37 * \log_2(nx) + 2.34 * 10^{-4} * nx$

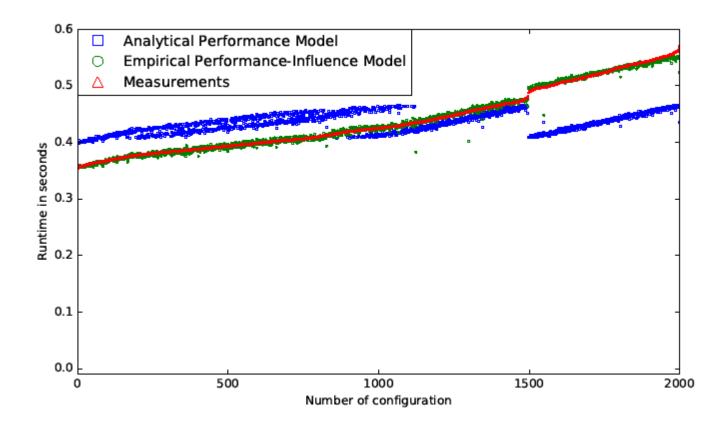
	[px]	[nx]	
T _{analytical}	$23.37 * \log_2(px)$	$23.37 * \log_2(nx)$; $2.34 * 10^{-4} * nx$	

Syntactic Comparison


• Use the equivalence classes and compute score according to the formula:

$$scoreOfTerms(e, a) = \begin{cases} -1, & if the other model has no such equivalence class \\ 0, & if the equivalence class exists, but no such term \\ 1 + simValue(e, a), & if the term exists in the other model \end{cases}$$

 $simValue(e, a) = \max(0, 1 - \frac{|e-a|}{\max(e,a)})$


 $23.37 * \log_2(px) + 23.37 * \log_2(nx) + 2.34 * 10^{-4} * nx$

$$-5-3 * px + 10^{-5} * nx + 1.5 * px^{2}$$

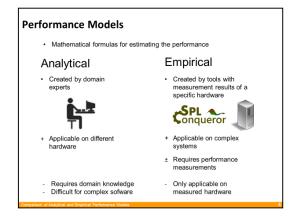
Semantic Comparison

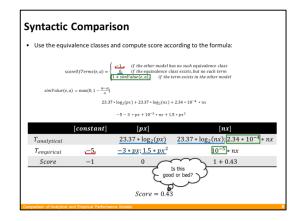
• Compute the results of the performance models

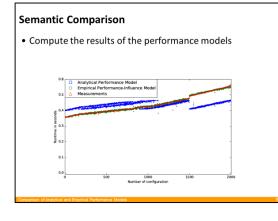
Semantic Comparison

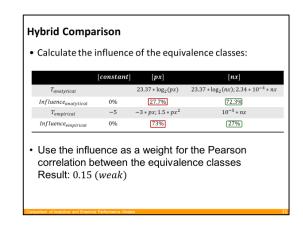
• Apply different measures on the computed results

Name	Result
Error Rate	10.1%
Jaccard Similarity	90%
Manhattan Distance	0.046 Good or
Euclidean Distance	0.0029 bad?
Pearson Correlation	0.41 (medium)


Hybrid Comparison


• Calculate the influence of the equivalence classes:


	[constant]	[p x]	[nx]
T _{analytical}		$23.37 * \log_2(px)$	$23.37 * \log_2(nx); 2.34 * 10^{-4} * nx$
$Influence_{analytical}$	0%	1.1%	98.9%
T _{empirical}	-5	$-3 * px; 1.5 * px^2$	$10^{-5} * nx$
Influence _{empirical}	0%	71.2%	28.8%


 Use the similarity of the influences as a weight for the Pearson correlation between the equivalence classes Result: 0.3

Conclusion

Comparison of Analytical and Empirical Performance Models

Thank you for your attention!